본문 바로가기
Linear Algebra

역행렬이 존재할 때와 존재하지 않을 때

by winston1214 2022. 1. 2.
반응형

앞선 포스팅에서 행렬식 determinant를 계산할 때 det A = 0 이면 역행렬이 존재 하지 않는다고 하였다. 이를 determinant의 관점이 아닌 Ker 과 Rank 의 관점에서 한 번 보자

## Square Matrix에서 역행렬이 존재하기 위한 조건

Square matrix A에서 ker A가 원점 0뿐이면 즉, 0차원이면 차원 정리에 따라 rank A = n 이라는 말과 같다. 이렇게 되면 단사인 경우가 된다. 단사가 되면 역행렬은 존재하는 상태가 된다. 이에 반해 전사일 경우가 되면 역행렬이 없는 경우가된다. 

이렇게 설명하니 뭔 말인가 싶지만 그러면 각각 같은 말을 나열하면서 정리해보겠다.

A가 n차 square matrix일 때 (square matrix만이 역행렬 존재) 역행렬이 조건

  • A는 단사로 mapping
  • Ker A가 원점 뿐이다
  • dim Ker A = 0
  • A는 전사로 mapping
  • Im A 가 n차원 공간 전체
  • rank A = dim Im A = n
  • a1...an 이 선형독립
  • Ax = 0 이 되는 것은 x = 0 뿐이다.
  • detA=≠0
  • A가 고윳값(eigen value) 0을 갖지 않는다
  • AT 가 정칙 행렬이다
  • 어떤 n 차원 벡터 y에서도 y = Ax 가 되는 x가 딱 한 개 있다.

이를 모두 만족하면 역행렬이 존재한다.

그럼 이와 반대되는 조건 즉, 역행렬을 가지지 않을 조건은 다음과 같다.

  • square matrix가 아닌 n차원 벡터 y 이면 y = Ax 가 되는 x가 없다. 또한, x의 값이 여러개 있는 경우
  • A 는 특이행렬
  • A의 사상은 단사가 아니다
  • Ax = 0 이 되는 x 0 이 존재
  • Ker A가 원점 o 뿐이 아니다
  • dim Ker A > 0
  • A의 열벡터 a1,...,an이 선형 종속
  • A의 사상은 전사가 아니다
  • Im A 가 n차원 공간 전체가 아니다
  • rank A = dim Im A < n
  • det A = 0
  • A가 eigen value 0을 가진다
  • 이러한 A를 AT로 치환한 것

 

## 역행렬이 없을 때

역행렬이 존재하지 않을 때 문제를 어떻게 풀까? 일단 두가지 경우가 존재한다

해가 존재하지 않는 경우와 해가 무수히 많은 경우가 있다.

여기서 먼저 해가 무수히 많은 경우를 보자. 이 때 먼저 어떻게든 해를 하나 구한다. 이를 x0 라고 하고 이를 특해라고 부른다. 그리고 이 특해에 Ker A에 속하는 벡터 z를 여러가지 형태로 변형하여 x0+z 형태로 여러가지 모든 해를 구한다. 이를 일반해라고 하고, 이를 Ax = y 의 형태로 나타낼 때의 해는 특해 + 일반해 의 구조를 갖는다.

즉 이를 식으로 나타내면 다음과 같다.

x=x0+c1zz+...+ckzk

이런 식으로 역행렬이 없고 해가 무수히 많은 경우에서 해를 구하는 방법이다.

구체적인 예시를 통해 다시 봐보자

## 해가 존재하지 않는 경우

예를 들어 다음과 같은 방정식이 있다 하자

2x14x2=24x15x2=25x19x2=1

이러한 방정식을 기본행 연산을 통해 조작하면 다음과 같은 행렬이 나오게 된다.

[103012004]

이를 연립 방정식 형태로 나타나면 x1=3 x2=2 0=4 처럼 나타난다. 이 결과에서 0 = 4 처럼 말도 안되는 식이 나오면 이는 해가 없다. 라고 판단한다.

## 무수히 많은 해가 존재하는 경우

x1+2x2x3+2x4=63x14x23x32x4=4

이와 같은 식이 있을 때 이를 행렬로 나타내면 다음과 같다.

[1212634324]

이를 기본행 연산으로 조작하면

[1052801327]

그리고 이 matrix를 연립방정식으로 나타내면

x15x3+2x4=8x23x3+2x4=7

이렇게 되고 x3=s,x4=t로 두고 해를 구하면

x1=5s2t+8x2=3s2t+7x3=sx4=t

이렇게 나온다. 이런 방식으로 미지수로 두면서 해를 구하게 된다.

즉 해를 구하는 방식은 다른 해 구하는 방식과 동일하게 기본행 연산으로 행사다리꼴 형태로 조작 후 해를 미지수로 둔 다음 방정식을 풀면 된다.

하지만 이렇게 하다보면 행사다리꼴 형태로 정확하게 안되는 경우가 발생한다.

예를 들어 다음과 같은 형태의 matrix를 보자

[105440123200036]

이러한 경우 3번째 행의 3번째 열 값이 0이 아닌 값이 나와야되는데 4번째 열에서 나오게 된다. 이러면 행사다리꼴 형태로 풀 수가 없다. 이를 해결하기 위해 다음과 같은 trick을 쓴다.

이런 식으로 열을 서로 바꿔주고 바뀐 열을 기록해 놓고 이에 따라서 풀면 된다.

 

 

반응형

'Linear Algebra' 카테고리의 다른 글

대각화(2)  (0) 2022.01.20
대각화(1)  (0) 2022.01.04
Rank 계산  (0) 2022.01.02
차원 정리 및 Rank  (0) 2021.12.31
정칙행렬이 아닌 경우  (0) 2021.12.28

댓글